All the information related to our products at your disposal:
Blog
If we understand the electrical grid as a large set of interconnected grids at different voltages, we find that the low voltage grid is the closest to the usual consumption points we deal with on a daily basis. However, something as everyday as this is sometimes a completely unknown phenomenon. That’s why today we want to explain how the LV grid works and what elements make it different from its siblings. Are you with us?
To understand what the low voltage (LV) grid is, we must first understand what we mean by electrical voltage and what types exist. Electrical voltage is a measure (a physical magnitude technically speaking) that allows us to calculate the difference in electrical potential between two points in a grid. This would be something like the flow – speaking in terms of rivers – that a wiring can support along its line; therefore, the more electrical potential (greater amount or electrical charge), the higher the voltage that the grid is capable of transporting and/or supporting in a controlled and efficient manner.
So, in the world of electrical engineering, three main types of voltage are distinguished: high voltage, medium voltage, and LV. We differentiate them according to the amount of electricity they are capable of displacing and how close or far each of them is from the consumption points. Normally, the voltage is higher in the initial phases of energy transportation, where greater electrical potential is needed to increase the “flow” and try to reduce losses.
Subsequently, as we approach the consumption points, the voltage must be reduced for safety, to minimize the risk of accidents from handling, and to align with the ranges of use of the circuits and devices with which we interact in our daily lives. This is where our protagonist today comes into play.
In this way, we can define the LV as one that operates within voltage ranges of up to 1 kV in alternating current. These characteristics are present every time we use an appliance – usually they operate at voltages between 220 and 230 volts in alternating current – or turn on a switch in our homes. This is why it is the most common type of voltage for all of us, as it facilitates our daily lives.
So, we find different everyday uses of LV. Let’s see some examples:
For all this to work, there are a series of agents that work together at different points in the LV grid. Let’s take a look at the main ones:
What Ormazabal area would you like to contact?Commercial and post.salesOther CountryAfghanistanAlbaniaAlgeriaAmericaAmerican Virgin Is.AndorraAngolaAnguillaAntigua and BarbudaArgentinaArmeniaArubaAustraliaAustriaAzerbaijanBahamasBahrainBangladeshBarbadosBelarusBelgiumBelizeBeninBermudaBhutanBoliviaBosnia and HerzegowinaBotswanaBrazilBrit.Ind.Oc.TerBrit.Virgin Is.Brunei DarussalamBulgariaBurkina FasoBurmaBurundiCabo VerdeCambodiaCameroonCanadaCayman IslandsCentral African RepublicChadChileChinaChristmas IslandCoconut IslandsColombiaComorosCook IslandsCosta RicaCote d'IvoireCroatiaCubaCurazaoCyprusCzech RepublicDemocratic Republic of the CongoDenmarkDjiboutiDominicaDominican RepublicEast TimorEcuadorEgyptEl SalvadorEquatorial GuineaEritreaEstoniaEthiopiaFalkland IslandsFaroe IslandsFijiFinlandFranceFrench GuayanaFrench PolynesiaFrench S.TerritFutunaGabonGambiaGeorgiaGermanyGhanaGibraltarGreeceGreenlandGrenadaGuadeloupeGuamGuatemalaGuineaGuinea-BissauGuyanaHaitiHeard Island and McDonald IslandsHondurasHong KongHungaryIcelandIndiaIndonesiaIranIraqIrelandIsraelItalyIvory CoastJamaicaJapanJordanKazakhstanKenyaKiribatiKorea, Republic ofKuwaitKyrgyzstanLaosLatviaLebanonLesothoLiberiaLibyaLiechtensteinLithuaniaLuxembourgMacauMadagascarMalawiMalaysiaMaldivesMaliMaltaMarshall IslandsMartiniqueMauritaniaMauritiusMayotteMexicoMicronesiaMinor Out. Isl.MoldovaMonacoMongoliaMontenegroMontserratMoroccoMozambiqueMyanmarNamibiaNauruNepalNetherlandsNew CaledoniaNew ZealandNicaraguaNigerNigeriaNiueNorfolk IslandNorth AmericaNorth KoreaNorth KoreaNorthern Cyprus (Turkish part)Northern Mariana Isl.NorwayOmanOrangePakistanPalausPalestinePanamaPapua New GuineaParaguayPeruPhilippinesPitcairn IslandsPolandPortugalPuerto RicoQatarRepublic of MacedoniaReunionRomaniaRussian FederationRwandaS. Sandwich InsSaint HelenaSaint Kitts and NevisSaint LuciaSaint Vincent and the GrenadinesSamoaSan MarinoSão Tome and PrincipeSaudi ArabiaSenegalSerbianSeychellesSierra LeoneSingaporeSlovakiaSloveniaSolomon IslandsSomaliaSomoaSouth AfricaSouth KoreaSouth SudanSpainSri LankaSt. Pier MiquelSudafrican republicSudanSurinameSvalbardSwatiniSwedenSwitzerlandSyriaTaiwanTajikistanTanzaniaThailandTogoTokelau IslandsTongaTrinidad and TobagoTunisiaTurkeyTurkmenistanTurksh CaicosinTuvaluUgandaUkraineUnited Arab EmiratesUnited KingdomUnited StatesUruguayUzbekistanVanuatuVatican City SatateVenezuelaVietnamWallisWest SaharaYemenYugoslaviaZambiaZimbabweProvincia
ormazabal@ormazabal.com
Parque Científico y Tecnológico de Bizkaia, Edf. 614, Astondo Bidea,48160, Derio (Bizkaia) España
+34 94 431 77 77
Subject Send Send
I confirm that I have read the Privacy Policy
I would like receiving information about Velatia’s products and services
Basic information of protection data. The data collected on this website will be processed by VELATIA to respond to your request for information, receive the requested catalogue or information about the products of your interest. If you wish to be subscribed to our newsletters and commercial communications we can keep you updated about Velatia's products and services. You can exercise your rights by writing to dataprivacy@velatia.com. You have more information about your rights and the processing of personal data in the Privacy Policy.
Share this post
electrical switchgear
low voltage
LV